N6 – Entropy

Key Concepts About Entropy

#1 - a thermodynamic function that increases as
the number of energetically equivalent ways of
arranging the components increases, S.
#2 – Random systems have more energy
dispersal and are more energetically stable,
lower energy, than ordered systems. Therefore,
entropy change is favorable when the result is
more energy dispersal, when there are more
microstate arrangements. When ΔS° is positive.
#3 – Increase in entropy of the universe is the
driving force for spontaneous reactions.
#4 – Nature proceeds toward the states that
have the highest probabilities of existing.

Practice Problem:

For the Rx: **2NO(g)** + **O**₂(g) \rightarrow **2NO**₂(g) ΔS°_{rxn} = -146.5 J/mol•K Calculate the standard molar entropy of O₂(g). $\Delta S^{\circ}_{NO(g)}$ = 210.8 J/mol•K , $\Delta S^{\circ}_{NO2(g)}$ = 240.1 J/mol•K

Some Changes that Increase Entropy
#1 - Products are in a more dispersed
arrangement.
#2 - Larger numbers of product
molecules than reactant molecules
#3 - Rxn's that have an increase in
temperature (exothermic).
#4 – Products that have more
degrees of movement.
#5 – Products that have more
molecular complexity.

N6 – Entropy

Key Concepts About Entropy

#1 - a thermodynamic function that increases as the number of energetically equivalent ways of arranging the components increases, S. **#2** – Random systems have more energy dispersal and are more energetically stable, lower energy, than ordered systems. Therefore, entropy change is favorable when the result is more energy dispersal, when there are more microstate arrangements. When ΔS° is positive. **#3** – Increase in entropy of the universe is the driving force for spontaneous reactions. **#4** – Nature proceeds toward the states that have the highest probabilities of existing.

Practice Problem:

For the Rx: **2NO(g) + O₂(g)** \rightarrow **2NO₂(g)** ΔS°_{rxn} = -146.5 J/mol•K Calculate the standard molar entropy of O₂(g). $\Delta S^{\circ}_{NO(g)}$ = 210.8 J/mol•K , $\Delta S^{\circ}_{NO2(g)}$ = 240.1 J/mol•K

Some Changes that Increase Entropy
#1 - Products are in a more dispersed
arrangement.
#2 - Larger numbers of product
molecules than reactant molecules.
#3 - Rxn's that have an increase in
temperature (exothermic).
#4 – Products that have more
degrees of movement.

#5 – Products that have more molecular complexity.

N6 – Entropy

Key Concepts About Entropy

#1 - a thermodynamic function that increases as the number of energetically equivalent ways of arranging the components increases, S. **#2** – Random systems have more energy dispersal and are more energetically stable, lower energy, than ordered systems. Therefore, entropy change is favorable when the result is more energy dispersal, when there are more microstate arrangements. When ΔS° is positive. **#3** – Increase in entropy of the universe is the driving force for spontaneous reactions. **#4** – Nature proceeds toward the states that have the highest probabilities of existing.

Practice Problem:

For the Rx: **2NO(g)** + **O**₂(g) \rightarrow **2NO**₂(g) ΔS°_{rxn} = -146.5 J/mol•K Calculate the standard molar entropy of O₂(g). $\Delta S^{\circ}_{NO(g)}$ = 210.8 J/mol•K , $\Delta S^{\circ}_{NO2(g)}$ = 240.1 J/mol•K

Some Changes that Increase Entrony
Joine changes that increase Littopy
#1 - Products are in a more dispersed
arrangement.
#2 - Larger numbers of product
molecules than reactant molecules.
#3 - Rxn's that have an increase in
temperature (exothermic).
#4 – Products that have more
degrees of movement.
#5 – Products that have more
molecular complexity.